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1 Introduction and discussion

The flow of non-relativistic fluids is described by the Navier-Stokes equations

~̇v + ~v.∇~v = −~∇P + ν∇2~v + ~f

~∇.~v = 0
(1.1)

where ~v is the fluid velocity, P the fluid pressure, ν the shear viscosity and ~f an externally

specified forcing function. Although these equations describe a wide variety of natural

phenomena (see e.g. [1] ) and have been intensively studied for almost two centuries, their

extremely rich phenomenology remains very poorly understood. In particular, most fluid

flows go turbulent at high Reynolds number, i.e. in the regime in which the viscous fluid
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term is negligible compared to the nonlinear convective term in (1.1). Although turbulent

flows appear complicated and statistical in nature, it has been suggested (see e.g. [2] ) that

these flows are in fact governed by a new and simple universal mathematical structure

analogous to a fixed point of the renormalization group flow equations. A completely new

angle on fluid dynamics could well be needed in order to uncover such a structure.

Recent investigations [3–13], within the framework of the AdS/CFT correspondence

of string theory [14] have revealed an initially surprising relationship between the vacuum

equations of Einstein gravity in an asymptotically locally AdSd+1 space and the equations

of hydrodynamics in d dimensions. More concretely these papers study a class of regular,

long wavelength locally asymptotically AdSd+1 solutions to the vacuum Einstein equations

with a negative cosmological constant. These solutions are shown to be in one to one

correspondence with solutions of the d dimensional hydrodynamical equations ∇µT
µν = 0.

In the last equation the stress tensor T µν is a holographically determined functional of

a d dimensional fluid velocity uµ and temperature T . In the long distance limit under

consideration it is appropriate to expand the stress tensor in a power series in the boundary

derivatives of the velocity and temperature fields. Schematically

T µν =
∞
∑

n=0

T d−nT µν
n (1.2)

where T is the local fluid temperature and T µν
n is a local function of the fluid velocity and

temperature of nth order in spacetime derivatives. The expressions for T µν
n for n ≤ 2 have

been explicitly determined in the references cited above (see [13] for the most general result)

and constitute a relativistic generalization of the incompressible Navier-Stokes stress tensor.

In summary, classical asymptotically AdSd+1 gravity is ‘dual’ to relativistic generalizations

of the Navier-Stokes equations at long distance and time scales.

Many theoretical and experimental investigations of fluid dynamics study the actual

incompressible Navier-Stokes equations (1.1). It is consequently of interest to find a dual

description of the Navier-Stokes equations (1.1) themselves rather than their their rela-

tivistic generalizations. This may be simply achieved by taking the appropriate limit of

the results of [4–13], and this limit is the topic of our note.

In order to find the gravitational description dual to (1.1), we adopt a two step proce-

dure. First, purely at the level of fluid dynamics we make a straightforward and possibly

well known observation. We note that the non-relativistic incompressible Navier-Stokes

equations (1.1) are the precise and universal outcome of a particular combined scaling

limit (one in which we scale to long distances, long times, low speeds and low amplitudes

in a coordinated fashion) applied to any reasonable relativistic equations of hydrodynam-

ics, i.e. the hydrodynamics a relativistic fluid with any reasonable equation of state.1 The

equations of fluid dynamics become non-relativistic at low speeds for the usual reason, and

also become effectively incompressible, as we go to velocities much lower than the speed of

sound (see for instance [1]).

1For instance the fluid that is dual to gravity studied below whose equation of state is dictated by

conformal invariance.
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To be more specific we show that the equations of hydrodynamics reduce, in a precise

fashion, to the incompressible non-relativistic Navier-Stokes equations (1.1) under the limit

δx ∼ 1

Tǫ

δt ∼ 1

Tǫ2

vi ∼ ǫ

δP ∼ T dǫ2

ǫ→ 0

(1.3)

where δx is the spatial length scale, δt the temporal scale while vi and δP represent

estimates of the magnitude of velocity and pressure fluctuations about an ambient config-

uration of equilibrium fluid at rest. The rough contours of this choice of scaling are quite

intuitive. It is clear we have to scale to long distances to be in the fluid dynamical regime.

The dispersion relation for shear waves, ω = iνk2 suggests that time intervals should scale

like spatial intervals squared.2 Scalings of distances and time intervals determine the scal-

ing law for velocities. Finally the pressure variations are scaled appropriately to ensure

that they cannot accelerate the fluid into velocities outside this scaling limit.

As we have explained, the scaling (1.3) of the equations of relativistic fluid mechan-

ics leads to the Navier-Stokes equations (1.1). It follows that this scaling operation is

a symmetry of the same equations. This is easily directly verified. In particular, if the

fields vi(x, t) and p(x, t) obey the unforced Navier-Stokes equations, then the rescaled

fields ǫvi(ǫx, ǫ2t) and ǫ2p(ǫx, ǫ2t) also obey the same equations. Consequently, the scaling

operation described above is a symmetry of the unforced Navier-Stokes equations.

As we have described above, the Navier-Stokes equations may be obtained as the

scaling limit of any reasonable relativistic equations of fluid dynamics. In describing the

connection with gravity, in most of the rest of this note, we will take the parent fluid

dynamical theory to be conformal. It is natural to wonder how much of the full relativistic

conformal group descends to a symmetry of the Navier-Stokes equations, and in what

form it does so. It is obvious that the relativistic Poincare group descends to the Galilean

symmetry group of the Navier-Stokes equations. In the next section we explain that the

scaling symmetry operation described in the previous paragraph is loosely related to the

dilatation operator of the parent relativistic conformal theory.3 Further we demonstrate

that all spatial special conformal transformations also descend to exact symmetries of the

Navier-Stokes equations. After our scaling these transformations effectively turn out to

be the ‘boost’ to a uniformly accelerated frame; the inertial forces one has to deal with

when working in a non-inertial frame are compensated for by a shift of the pressure. These

spatial special conformal transformations, together with the Galilean group and the scaling

symmetry described above, form the (d+ 2)(d+ 1)/2− 1 dimensional symmetry algebra of

2The scaling to arbitrarily low velocities projects out sound waves with dispersion relation ω ∝ k.
3This loose ‘descent’ is analogous to the relation of the dilatation operator of the Schroedinger group to

the generator of scale transformations of the massless Klein Gordon equation.
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the Navier-Stokes equations. We list the commutation relations of this algebra,4 and the

action of its generators on the velocity fields, in detail in the next section.

The conformal symmetry algebra described above is just subset of the full infinte

dimensonal symmetry algebra of the Navier Stokes equations [16] (see also [17–19] for

other related work) . The additional generators of the full symmetry algebra are very easy

to describe; they consist of boosts to a reference frame whose velocity is homogeneous in

space but an arbitrary function of time. Just as in our discussion in the paragraph above,

the pseudo force from such a frame change may be cancelled by an appropriate shift in

pressure, and so is a symmetry of the Navier Stokes equations.5

The scaling limit described above admits an interesting generalization. Consider the

equations of fluid dynamics on a base manifold Gµν = gµν + Hµν where Hµν is small.

By taking all terms that depend on Hµν to the r.h.s. , ∇µT
µν = 0 reduces effectively to

the equations fluid dynamics on the base space gµν forced by an Hµν dependent forcing

function. If we combine the scaling described in the paragraph above with the H00, Hij =

O(ǫ2) and Hi0 = ǫAi(x
i, t), the effective resultant forcing function survives and is finite in

the ǫ → 0 limit. It turns out that the effective scaled forcing function depends only on

Ai(x
i, t) and has a very simple form. It is precisely the force applied on a charged fluid by

effectively a background electromagnetic potential A0 = 0, Ai = Ai(x
i, t). Consequently

the ‘magnetohydrodynamical’ Navier-Stokes equations (i.e. the Navier-Stokes equations

with a forcing function from an arbitrary background electromagnetic field) follows as

a universal result of a scaling of the equations of relativistic hydrodynamics with small

metric fluctuations.

We now return to the duality between gravity and fluid dynamics. We apply the scaling

limit described in the previous paragraphs to the equations of fluid dynamics that are

holographically dual to gravity. This procedure gives us an asymptotically locally AdSd+1

gravity dual to any solutions of the magnetohydrodynamical Navier-Stokes equations. The

resultant metric describes small - but non linearly propagating fluctuations about a uniform

black brane. We present the explicit form of the resultant bulk metric in section 4 below.

It follows from our discussion that every solution to the Navier-Stokes equations (1.1)

is also a scaling limit of a solution to Einstein’s equations with a negative cosmological

constant with one important caveat. The proviso is that many actual solutions of the

Navier-Stokes equations describe fluids subject to hard wall type boundary conditions,

and we do not (yet?) understand how to generate gravitational duals of these boundary

conditions. However the qualitative effects of boundary conditions may easily be mimicked

by appropriate forcing functions which are completely in our hands. In particular, while

several experiments that study fully developed steady state turbulence do so in fluids

with hard wall boundary conditions, there should be no barrier to setting up the same

4The nonrelativistic conformal symmetry group of the Navier-Stokes equations includes the contraction

of spatial conformal generators Ki but does not include a generator that descends from the temporal

conformal generator K0. Our algebra is distinct from the Schroedinger group studied for example in [15]
5We thank J. Maldacena and R. Gopakumar for suggesting a symmetry enhancement along these lines,

and thank J. Maldacena for drwaing our attention to [16], see especially the top of pg 68. R. Gopakumar

and collaborators are currently further studying this algebra and its extensions.
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phenomenon for a fluid with no boundaries (e.g. on Rd or on a compact manifold) with the

appropriate forcing function. In order to make this expectation concrete we have identified

one forcing function (of a likely infinite plethora of possibilities) applied to a fluid on Rd,

whose steady state end flow we expect to be turbulent at asymptotically high Reynolds

numbers. In the rest of this introduction we describe this forcing function, and the reason

we expect the flow it generates to be turbulent.

Consider the forcing function Ax = αeiω0t+ikoy+ cc, together with Ai = 0 for i 6= x

acting on (for concreteness) a fluid, on R2,1 whose spatial sections are parameterized by the

Cartesian coordinates x and y. This gauge fields sets up a time and y dependent electric

field in the x direction, together with a magnetic field in the plane. It is very easy to find

one exact solution to the equations of fluid dynamics subject to this forcing function. On

this solution vx is proportional to Ax and vy = 0. This solutions describes a fluid driven

into motion in the direction of an applied electric field (the x direction), while Lorentz

forces from the magnetic field, in the y direction, are balanced by pressure gradients. All

nonlinear terms in the Navier-Stokes equations vanish when evaluated on our solution.

However nonlinear terms have an important effect on the dynamics of small fluctuations

about our solution at high Reynolds number. In particular, in appendix A below we

demonstrate that nonlinear terms drive some fluctuation modes (with momentum in the

x direction) unstable at high enough Reynolds numbers. In order to explain the possible

significance of this instability, it is useful to recall the usual situation with fluids at high

Reynolds numbers.

As we have described earlier in our introduction, fluid flows at high Reynolds numbers

are very rich, and of potential theoretical interest. Nonetheless, in every highly symmet-

rical situation, there exists a simple ‘laminar’ solution, that preserves all the symmetries

of the problem, at every value of the Reynolds number. This solution is often simple

to determine analytically, and certainly shows none of the fascinating phenomenology of

turbulence. However in interesting situations this solution becomes ‘tachyonic’ i.e. goes

unstable to linear fluctuations that break some of the symmetries of the problem, above

a critical Reynolds numbers. The ‘end point’ of this ‘tachyon condensation’ typically has

richer dynamical behavior than the original solution itself. As the Reynolds number is fur-

ther increased, further instabilities are usually triggered, and at arbitrarily high Reynolds

numbers flow is turbulent.

We suspect that the dynamical pattern described in the previous paragraph applies

to the exact solution described in this paper. As we currently have no theoretical tools to

predict the onset of turbulence in any fluid flow this is necessarily a guess, but one that

we believe is natural, given the results of our stability analysis. This guess suggests that

the stable steady state solution to AdS4 gravity, with the effective gauge field Ax described

above, is dual to a turbulent fluid flow at high Reynolds numbers. Of course the particular

situation described above is only one of a plethora of possibilities. We describe this solution

in detail in section 5 and appendix A below only in order to have one concrete example

of a gravitational set up that is likely to be dual to a turbulent fluid flow; not because we

think that our particular is distinguished in any way.

– 5 –
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We believe it is likely that the fluid-gravity map will lead to interesting new insights

on the nature of solutions of Einstein gravity in the presence of a horizon.6 It also does not

seem impossible that gravitational techniques and methods will prove useful in bringing new

insights into the investigation of fascinating fluid phenomena like turbulence. In particular,

it would be fruitful to understand the Kolmogorov laws on well-developed turbulence and

their modification within the gravity framework. The symmetry algebra (3.5) may also

throw new light on these issues. We leave further investigation of these issues to future work.

Note added. While we were completing this paper we received the preprint [20] which

has substantial overlap with section 2 of this paper.

2 Scaling the Navier-Stokes equation

2.1 The Navier-Stoke equation as a universal limit of fluid dynamics

In this section we will display a scaling limit7 that reduces fluid dynamical equations of the

form ∇µT
µν = 0, to the incompressible non-relativistic Navier-Stokes equations usually

studied in fluid dynamics text books (see e.g. [1]).

The equations of relativistic fluid dynamics are

∇µT
µν = 0

T µν = ρuµuν + PPµν − 2ησµν − ζθPµν + . . .

Pµν = gµν + uµuν ,

σµν = PµαPνβ

(

∇αuβ + ∇βuα − gαβ

d− 1
∂.u

)

, θ = ∇βuβ

(2.1)

Here P is the pressure, ρ the energy density, η the shear viscosity, ζ the bulk viscosity of

the fluid, and gαβ the metric of the space on which the fluid propagates. Each of the fluid

quantities listed above may be regarded as a function of the fluid temperature - and also

of chemical potentials if the fluid is charged. The . . . in the equation above refer to terms

of second or higher order in spacetime derivatives.

If the fluid is charged, then we must supplement the equation (2.1) with an equation of

charge conservation for every conserved charge. Below, we comment briefly on the scaling

limit of this equation.

2.2 A scaling limit

Now let us study the motion of a fluid on a metric of the form Gµν = gµν + Hµν . We

assume that the background metric gµν has the form

gµνdx
µdxν = −dt2 + gijdx

idxj . (2.2)

6For instance, consider a black brane in asymptotically flat space. At sufficiently low energies, a beam

of gravitons shot at this brane perturbs the non normalizable boundary conditions of the effectively AdS

near horizon region of the brane. It may be possible to choose this perturbation to drive the gravity in the

near horizon AdS region turbulent.
7This section was worked out in collaboration with J. Maldacena.
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(this is simply a choice of coordinate system, for a large class of metrics) while the small

fluctuation Hµν is completely arbitrary. As we have explained in the introduction, we

intend to view the fluid flow on the space with metric Gµν as an effectively forced flow on

the space with metric gµν . In order to do this we need to map the velocity field ũµ on the

space Gµν to a velocity field on gµν . This map, which must respect the requirement that

u2 = ũ2 = −1, may be chosen in a natural fashion if one thinks of the velocity field as

generated by the path of ‘particles’ through spacetime. We now describe this in more detail.

Let the fluid velocity on the space Gµν be given by ũµ where

ũµ =
1√
V 2

(

1, ~V
)

(2.3)

where ~V is a d − 1 spatial vector with components V i, V α is a d component object with

components (1, ~V ) and V 2 is GαβV
αV β (the indices α, β run over d spacetime indices

while the indices i, j run over the d−1 spatial indices). Expanding ũµ to first order in Hαβ

we have

ũµ = uµ + δuµ + . . .

uµ =
1

√

1 − gijV iV j

(

1, ~V
)

δuµ = −uµu
αuβHαβ

2

(2.4)

where uµ is the d velocity of the fluid referred to the metric gµν . All terms in δuµ above

depend on the fluctuation metric Hαβ; below we will take all these terms to the r.h.s.

of (1.1) and view them as contributions to the effective forcing function.

One obvious solution to the equations of fluid dynamics on the space with metric gµν

is simply the fluid at rest with constant pressure P0 and density ρ0. We now turn to a

particular kind of small amplitude and long distance fluctuation about this uniform fluid

at rest and with pressure P0 and energy density ρ0 on a manifold that is ‘close’ to gµν .

More specifically we set

H00 = ǫ2h00(ǫx
i, ǫ2t)

H0i = ǫAi(ǫx
i, ǫ2t)

Hij = ǫ2hij(ǫx
i, ǫ2t)

V i = ǫvi(ǫxi, ǫ2t)

P − P0

ρ0 + P0
= ǫ2p(ǫxi, ǫ2t)

(2.5)

and take ǫ to be arbitrarily small. Although we have explicitly listed only the scaling of the

pressure P above, the energy density ρ and viscosity ν also scale in a similar fashion (this

is consistent with the fact that they are all functions of the same underlying variables). We

have normalized pressure fluctuations by ρ0 + P0 rather than P0 for future convenience.

We will now examine what happens to the Navier-Stokes equations under this scaling.

Let us first start with the 0 or temporal component of these equations. It is easy to check

– 7 –
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that

∇µT
µ0 = ǫ2

[

ρe

(

∇iv
i
)]

+ O(ǫ4)

ρe = ρ0 + P0

(2.6)

Consequently, in the limit of small ǫ this equation reduces simply to ∇iv
i = 0, where ∇i is

the covariant derivative with respect to the purely spatial metric gij .

Let us now turn to the spatial Navier-Stokes equations. After some calculation we find

∇µT
µi = ǫ3

[

ρe∇ip+ ρe∇µ

(

vivµ
)

− 2η∇j

(

∇jvi + ∇ivj

2
− gij

~∇.~v
d− 1

)

− ζ∇i
~∇.~v − f i

]

+ O(ǫ5)

f i = ρe

(

∂ih00

2
− ∂0Ai −

∂j(
√
gAiv

j)
√
g

+ vj∂iAj

)

(2.7)

where vµ = (1, vi). Using the equation ∇iv
i =

∂i(
√

gvi)√
g = 0, the coefficient of ǫ3 in the

equation above may be simplified to

∇ip+ ∂0v
i + ~v.∇vi − ν

(

∇2vi +Ri
jv

j
)

=
∂ih00

2
− ∂0A

i + F i
jv

j (2.8)

where Fij = ∂iAj − ∂jAi is the field strength for the vector field Ai and ν = η/ρe is the

‘kinematical viscosity’ of the fluid.8 (2.8) takes a somewhat simpler form in terms of slightly

redefined variables. Let

Ai = ai + ∇iχ

where χ is chosen to ensure that ∇ia
i = 0. This is the usual split of a gauge field into its

pure curl and pure divergence parts. Note that

fij ≡ ∂iaj − ∂jai = Fij .

We also define the effective pressure

pe = p− 1

2
h00 + χ̇

in terms of which (2.8) reduces to

∇ipe + ∂0vi + ~v.∇vi − ν
(

∇2vi +Rijv
j
)

= −∂0a
i − vjfji (2.9)

(2.9) is precisely the Navier-Stokes equation with forcing function generated by an effective

background electromagnetic field (with a0 = 0 and spatial vector ai) on the effectively

charged fluid.

8 Note also that we have used conventions in which

[∇ρ,∇σ]Aν = AβR
β
νρσ, R

β
αθβ = Rαθ

With these conventions the scalar curvature of a unit d sphere is d(d − 1) and the Ricci tensor of a unit

sphere is given by Rij = (d − 1)gij .

– 8 –
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2.3 Charged fluids

If the fluid under study carries an extra set of conserved charges, it obeys an extra set of

conservation equations of the form ∇µJ
µ = 0. It is easy to verify that these equations all

reduce to the condition that the fluid velocity is divergence free in the scaling limit under

study in this section. Consequently charged fluids obey the same equations as uncharged

fluids in the scaling limit under study in this subsection.

2.4 Reduction of Cauchy data

Returning to the study of uncharged fluids, the Cauchy data9 of the parent relativistic

fluid dynamical equations consists of d real functions of space; the value of the pressure

field and the value of the d− 1 independent velocity fields on an initial time slice. As the

fluid dynamical equations are of first order in time, the Cauchy data of the problem does

not include the time derivatives of all these fields.

Now let us examine the Cauchy data of the incompressible Navier-Stokes equations.

Note that the spatial divergence of (2.8)

∇2pe = −∇iv
j∇jv

i − vivjRij + ∇i

[(

−νRi
j + f i

j

)

vj
]

(2.10)

determines the pressure of the fluid as a function of the fluid velocity (only the velocity -

not its time derivatives ). In other words the independent data in the fluid is simply given

by d− 2 real functions that parameterize an arbitrary divergence free velocity field.

It follows that two of the degrees of freedom of the equations of relativistic fluid

dynamics are lost on taking the scaling limit of the previous subsection. These two degrees

of freedom are simply the fluctuations of the pressure and the divergence of the velocity.

At the linearized level these two degrees of freedom combine together in sound mode

fluctuations. (Note that the relativistic dispersion of sound implies that a sound mode has

twice as much data as a shear mode.). Consequently the reduction of Cauchy data in the

scaling limit of this paper follows simply a nonlinear restatement of the observation that

sound waves are projected out in our scaling limit.

3 Symmetries

As we have noted above, the Navier-Stokes equations may be obtained by applying the ap-

propriate scalings to the equations of relativistic hydrodynamics with an arbitrary equation

of state. The parent hydrodynamical system may in particular be chosen to be conformally

invariant. It is natural to wonder whether either the dilatation or special conformal trans-

formations of the parent theory descend to a symmetry of the the Navier-Stokes equations.

In this section we answer this question in the affirmative.10

9We thank S. Trivedi for very useful discussions on the topic of this subsection.
10This section was worked out in collaboration with R. Loganayagam.
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3.1 Dilatations

Let us first explain how this works for dilatations. Dilatations consist of a diffeomorphism

(x′)µ = xµ

λ , T ′ = T , (u′)µ = uµ

λ (g′)µν = λ2gµν compounded with the Weyl transformation

x̃µ = (x′)µ, g̃µν =
(g′)µν

λ2 , ũµ = λ(u′)µ, T̃ = λT . In sum

x̃µ =
xµ

λ
, g̃µν = gµν , ũµ = uµ, T̃ = λT.

This action on coordinates, temperatures and fields, is a symmetry of the equations of con-

formal relativistic fluid dynamics. While this operation commutes with our scaling limit,

it is not by itself a symmetry of the Navier-Stokes equations. This is because the kinemat-

ical viscosity ν, regarded as a parameter in the Navier-Stokes equations, is proportional to
1
T and so changes under the variable transformation described above. The Navier-Stokes

equations are however simple enough to allow dilatation transformations listed above to

be modified into a true symmetry of the Navier-Stokes equations by ‘absorbing’ the trans-

formation of ν into ‘anomalous’ transformations of time and velocity. The result of this

procedure is simply (1.3) with which we started this note.

3.2 Special conformal transformations

The situation is more straightforward for special conformal transformations. The scaling

law for the velocity and temperature fields, under a special conformal transformation, may

also be obtained by compounding a diffeomorphism with the appropriate Weyl transfor-

mation. Restricting to infinitesimal conformal transformations, we find11, 12

δxµ = −2c.xxµ + x2cµ

δuµ = −2 [xµcν − xνcµ] uν − δxν∂νu
µ

δT = 2c.xT − δxν∂νT

(3.2)

Now note that special conformal transformations induce an additive shift on the tem-

perature fluctuation, δT , proportional to x.cT0 where T0 is the temperature of the back-

ground. In order that this shift respect the ǫ2 scaling of δT we are required to scale c0 ∝ ǫ4

and ci ∝ ǫ3. Imposing this scaling and retaining terms only to leading order in the velocity

11In order to verify the covariance of local equations under these symmetry transformations, it is sufficient

to omit the terms proportional to δxµ∂µ but instead to transform all derivatives according to the rule

δ (∂β) = 2 [cβx.∂ − xβc.∂ + x.c∂β]

12Under this transformation, the shift in a conformal stress tensor is given by

δT
µν = 2d(c.x)T µν + 2(xλ

c
µ
− x

µ
c
λ)T ν

λ + 2(xλ
c
ν
− x

ν
c
λ)T µ

λ − δx
λ
∂λT

µν (3.1)

Upon accounting also for the shift in the derivatives, it is easy to convince oneselves that the equation

of energy momentum conservation, for any identically traceless stress tensor, is invariant under special

conformal transformations.
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expansion (3.3) reduces to13

δt = 0

δxi = −t2ci

δvi = −2cit+ t2cj∂jv
i

δT = 2(−c0t+ cixi)T + t2cj∂jT

(3.3)

It is clear that the symmetry generated by c0 acts trivially (it does not act on coordi-

nates or velocities, but merely generates a shift, linear in time, of the pressure; more about

this below). However the symmetries generated by ci act nontrivially, and are directly

verified to be symmetries of the Navier-Stokes equations.14

3.3 The full symmetry group

We have thus discovered that the Navier-Stokes equations enjoy invariance under a confor-

mal symmetry group. The generators of this group are the dilatation D, special conformal

symmetries Ki Gallilian boosts Bi, the generator of time translations (energy) H, momenta

Pi and spatial rotations Mij . The action of these generators on velocity fields is given by

Dvj = (−2t∂t − xm∂m − 1) vj

Kiv
j = − 2tδij + t2∂iv

j

Biv
j =δij − t∂iv

j

Hvj = − ∂tv
j

Piv
j = − ∂iv

j

Mikv
j =δijv

k − δkjv
i − (xk∂i − xi∂k)v

j

(3.4)

The commutation relations between these various generators is given by

[D,Ki] = − 3Ki

[D,Bi] = −Bi

[D,H] =2H

[D,Pi] =Pi

[D,Mij ] =0

[Mij , Pk] = − δikPj + δjkPi

[Mij ,Kk] = − δikKj + δjkKi

(3.5)

13As above, in verifying the covariance of equations under these transformation, it is sufficient to omit

the terms proportional to t2cj∂j above, but instead to transform derivatives according to

δ (∂t) = 2tc
i
∂i δ (∂i) = 0.

14Under the transformations listed in (3.3) we have δpe = δp

dP0

= 2c.x so that δ∂ipe = 2ci. Further

δ(v̇i + v.∇vi) = −2ci and the viscous term is unchanged. Adding all terms together we have a symmetry

of the equations.
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[Mij , Bk] = − δikBj + δjkBi

[Mij ,H] =0

[Ki, Pj ] =0

[Ki, Bj ] =0

[Ki,H] = − 2Bi

[H,Bj ] = − Pi

The symmetry algebra listed in (3.5) may presumably be obtained from the appropriate

contraction of the parent symmetry algebra SO(d, 2). A related study is currently under

progress in [21].

In addition to the symmetries listed above, the Navier-Stokes equations have an infinite

dimensional group of trivial symmetries, under which the pressure is simply shifted by an

arbitrary function of time. These are symmetries of the equation because only gradients of

the pressure enter the Navier-Stokes equations, and they are trivial because the pressure

is not really an independent variable of the Navier-Stokes equations, which may in fact be

eliminated by taking the curl of those equations. For this reason one need not keep track

of the action of symmetry generators on the pressure. However it is not difficult to do so

and we find

Dpe =(−2t∂t − xm∂m − 2) pe

Kipe =2xi + t2∂ipe

Bipe = − t∂ipe

Hpe = − ∂tpe

Pipe = − ∂ipe

Mikpe = − (xk∂i − xi∂k)pe

(3.6)

This action of the symmetry generators on the pressure field do not quite yield the com-

mutation relations (3.5), but instead have additional terms on the r.h.s. corresponding to

generators of the trivial symmetries referred to above (i.e. generators that shift the pres-

sure field by a function of time). Spatial derivatives of the pressure field, however, honestly

transform according to the algebra (3.5). Consequently, the symmetry algebra (3.5) is

not represented on the pressure field itself, but on its spatial derivatives. This is vaguely

reminiscent of the fact that the two dimensional conformal group has well defined action

on all derivatives of massless scalar fields, but not on the field itself.

4 The gravity solution dual to fluid dynamics in the scaling regime

4.1 The dual bulk metric

As we have described above, any solution of the incompressible non-relativistic Navier-

Stokes equations solves the equations of fluid dynamics dual to gravity up to O(ǫ3), under

the scaling listed in the previous section. Now in [9, 10, 13] the equations of fluid dynamics

are obtained as the Einstein constraint equation of a bulk asymptotically locally AdSd+1
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space. It is thus natural to define the gravitational dual to a solution of the Navier-

Stokes equations as any small fluctuation about a black brane background that solves all

of Einstein’s equations (constraint as well as dynamical) to cubic order in ǫ. Adopting this

definition, it is easy to read off the bulk metric dual to the Navier-Stokes equations from

an appropriate scaling of the bulk metric of [9, 10, 13].

In computing the bulk metric upto O(ǫ3) in the sense described above, it turns out

that terms from only the zeroth order and the first order in the derivative expansion of the

gravitational solutions of [9, 10, 13] are relevant. The metric up to first order in derivative

has the following form

ds2 = ds20 + ds21

where

ds20 = −2uµdx
µdr +

1

bdrd−2
uµuνdx

µdxν + r2gµνdx
µdxν

ds21 = −2ruν

(

uα∇̄α

)

uµdx
µdxν +

2

d− 1
r
(

∇̄αu
α
)

uµuνdx
µdxν

+ 2br2F (br)σµνdx
µdxν

σµν =
1

2

(

∇̄µuν + ∇̄νuµ

)

+
1

2

(

uν

(

uα∇̄α

)

uµ + uµ

(

uα∇̄α

)

uν

)

− 1

d− 1

(

∇̄αu
α
)

(uµuν + gµν)

F (x) =

∫ ∞

x
dy

(

yd−1 − 1

y(yd − 1)

)

b =
d

4πT
= b0 + δb

T = T0 + δT

(4.1)

Here ∇̄ denotes the covariant derivative with respect to the full boundary metric which is

equal to a background gµν plus perturbation Hµν . T0 is the temperature of the background

blackbrane. The terms that appear in the metric involve covariant derivatives of the d

velocity uµ with respect to the full boundary metric. These terms can be expressed as

covariant derivatives of the d − 1 velocity vi and the metric perturbation Ai = H0i with

respect to spatial part of the background metric gij .

∇̄iuj = ∇ivj + O(ǫ4)

∇̄iu0 + ∇̄0ui = ∂0(vi +Ai) −
1

2
∂ih00 −

1

2
∂i(vjv

j) − vjFij + O(ǫ4)

∇̄µu
µ = ∇jv

j + O(ǫ4)

uµ∇̄µu0 = O(ǫ4)

uµ∇̄µui = ∂0(vi +Ai) −
1

2
∂ih00 + (vj∇j)vi − vjFij + O(ǫ4)

Fij = ∂iAj − ∂jAi

(4.2)

Here ∇ denotes the covariant derivative with respect to gij . The raising and lowering of

the i, j indices are also with respect to the metric gij . To simplify the expression of σµν
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in (4.2) the constraint ∇iv
i = 0 has been used. Using these expressions the derivative part

of the metric can be written as

ds21 =b0r
2F (b0r) (∇ivj + ∇jvi) dx

idxj − 2b0r
2F (b0r)v

j (∇ivj + ∇jvi) dt dx
i

+ 2r

(

∂0(vi +Ai) −
1

2
∂ih00 − vjFij + (vj∇j)vi

)

dt dxi + O(ǫ4)
(4.3)

Here the first term is of order ǫ2 and the last two terms are of order ǫ3. Since from the

constraint equations ∇iv
i = 0, there is no contribution from the scalar sector. The zeroth

order metric can also be expanded in powers of ǫ. It turns out that to solve Einstein

equation up to order ǫ3 ,it is sufficient to expand the zeroth order metric up to order ǫ2 in

the fluctuations.

ds20 =
1

bd0r
d−2

dt2 + r2
(

−dt2 + gijdx
idxj

)

+ 2dt dr

− 2

bd0r
d−2

(Ai + vi) dt dx
i − 2 (Ai + vi) dx

idr

+
1

bd+1
0 rd−2

(

−d δb+ vjv
j − h00

)

dt2

+
1

rd−2
(Ai + vi) (Aj + vj) dx

idxj −
(

−vjv
j + h00

)

dt dr

(4.4)

Here the first line is of order ǫ0, the second line is of order ǫ1 and the third is of order ǫ2. The

full metric is given by the sum of (4.4) and (4.3); and solves Einsteins equations to O(ǫ3)

provided the velocity and temperature fields above obey the incompressible Navier-Stokes

equations (1.1). These equations imply in particular that

∇2T

T0
= −∇iv

j∇jv
i − vivjRij + ∇i

[(

−νRi
j + F i

j

)

vj
]

+
1

2
∇2h00 − ∂0(∇.A) (4.5)

an equation that determines δT (and hence δb in (4.4)) as a spatially nonlocal but tempo-

rally ultralocal functional of the velocity fields vi. It follows that though the bulk metric

at xµ is determined locally as a function of temperatures and velocities at xµ, it is not

determined locally as a function of velocities at xµ. This non locality is a consequence of

the infinite speed of sound (and consequent action at a distance) in our scaling limit.

4.2 Comments on the bulk metric

Several comments on the bulk metric (4.3) and (4.4) are in order. Let us first spell out

some terminology. We refer to the parts of the bulk metric that are proportional to a linear

combination of dt2 or
∑

i(dx
i)2 as its scalar components. Terms in the metric proportional

to dtdxi are called its vector components, while terms proportional to dxidxj are referred

to as its tensor components.

Now the derivative expansion of [4–13] solves the Einstein equations in a multi step

process. In the first step the dynamical Einstein equations are used to determine the

r dependence of the bulk metric as a function of boundary data, in each of the sectors

described above. The requirement of regularity of the future horizon is then used to
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determine the boundary data of the tensor sector in terms of the boundary data in the

vector and scalar sectors (roughly the fluid temperature and velocity).

In the scaling limit described in the previous subsection, the tensor sector of the bulk

metric is particularly simple. It is given by

b0r
2F (b0r) (∇ivj + ∇jvi) dx

idxj +
1

rd−2
(Ai + vi) (Aj + vj) dx

idxj . (4.6)

Note that even though the velocity vi is scaled to zero in the scaling limit under study

in this paper, the leading order in ǫ metric (4.6) includes a quadratically nonlinear in

the velocities. This is a consequence of the fact that we scale distances to infinity at the

same rate as velocities to zero. Had we simply scaled amplitudes to be small, while keeping

distance scales finite, we would have ended up with only the first of these two terms in (4.6)

and the resultant geometry would simply have been the dual of linearized fluid dynamics.

The Navier-Stokes equations are obtained out of the Einstein constraint equations

acting on the bulk metric described above. The first term in (4.6) gives rise to the viscous

term in the Navier-Stokes equations, while the second term in (4.6) is the origin of the

nonlinear convective term in those equations. It is consequently not surprising that ratio

of the first to the second term in (4.6) is proportional to the Reynolds number Re of the

flow: in fact it is of order Re× 1
rdF (r)

. Now F (r) ∼ 1
r . at large r; so that the viscous term

in (4.6) appears to dominates the nonlinear term in that expression when r > (Re)1/d−1.

This appearance is atleast partly a coordinate artifact, as is evidenced by the fact that the

two terms in (4.6) contribute equally to the Einstein constraint equations at every r (this

follows as as these equations are independent of r).15

5 Simple steady state shear flows at arbitrary Reynolds number

Consider a fluid on Rd−1,1, subject to an effective forcing

ax =

∫

dωdka(k, ω) exp [iky + iωt]

ai = 0, (i 6= x)

(5.1)

Here x and y parameterize orthogonal displacements in the d − 1 spatial directions, and

a(k, ω) is any function.

In the presence of this forcing function, it is easy to verify that the velocity field

vx = −
∫

dkdω
a(k, ω)eiky+iωt

1 − iνk2

ω

vi = 0 i 6= x

(5.2)

15The ratio computed above naively suggests that nonlinearities at different effective Reynolds numbers

are separated in the bulk radial coordinate; a result reminiscent of the approximate locality in scale of

high Reynolds number fluid flows. While this interpretation is too quick for the purposes of evaluating the

Einstein constraint equation, perhaps the naive ratio of the two terms in (4.6) is physically relevant for

some physically interesting questions. We feel this deserves further contemplation.
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(together with the pressure field which may be obtained by integrating (2.10) ), is an exact

solution of (2.9).

In order to be concrete let us make the simple choice a(k, ω) = a(−k,−ω) = αδ(k −
k0)δ(ω − ω0). In this special case the forcing function is given by

ax = α exp [ik0y + iω0t] + cc

ai = 0, (i 6= x)
(5.3)

and the velocity field is given by16

vx = −αe
ik0y+iω0t

1 − i
νk2

0

ω0

+ cc

vi = 0 i 6= x

(5.4)

This solution is characterized by two dimensionless numbers, a = α
koν and b = νk2

ω The

Reynolds number for this solution is given by

R =
vL

ν
=

a√
1 + b2

. (5.5)

and can be made large by taking a to infinity at fixed b. This may be achieved, for instance,

by increasing the strength of the forcing amplitude α keeping everything else fixed.

In appendix A we outline a linear stability analysis of the special flow described above.

We find that in d = 2 this flow is unstable at large enough Reynolds numbers for a range

of the parameter b. As we have described in the introduction, this suggests that the flow

is dynamically interesting, and likely turbulent, at asymptotically high Reynolds numbers.

Assuming this is the case, we have identified atleast one gravitational system that is dual

to steady state turbulence. In some detail, consider gravity with a negative cosmological

constant, subject to the small z boundary condition on the metric

lim
z→0

ds2 =
1

z2

(

dz2 − dt2 + ǫdtdxiai + dxidxi

)

(where i = i . . . d − 1 and ai is the gauge field (5.1)). The steady state solution of this

gravitational system is dual to a turbulent flow of d dimensional fluid dynamics whenever

the parameters in the function ai above are chosen to satisfy the inequality a≫
√

1 + b2.

In appendix B we have presented a generalization of the solution described in this

section to the forced flow of a fluid on a sphere. In that situation one should obtain the

dual of a turbulent fluid in an spacetime that is asymptotically global AdS.
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A Stability analysis

In this appendix we study linear fluctuations about the solution (5.4) for the special case

d = 3. In two spatial dimensions the dual of a divergenceless velocity is the gradient of a

scalar, and the field strength of a gauge field is itself dual to a scalar. In other words we

can write

vi = ǫij∂jχ

fij = ǫijf
(A.1)

The Navier-Stokes equations (2.9) may be rewritten (after eliminating the pressure by

taking the curl) in terms of these scalars as

−∇2χ̇+ ν∇4χ− ǫjm∇mχ∇j∇2χ+ ḟ + ǫiq∇iχ∇qf = 0 (A.2)

In terms of these variables the solution (5.4) takes the form

f0 = −ik0α exp [ik0y + iω0t] + cc

χ0 = − 1

ik0
× αeik0y+iω0t

1 − i
νk2

0

ω0

+ cc
(A.3)

A.1 Setting up the eigenvalue equations

Let us now set

χ = χ0 + θ

(

eiq0x

∫

dωdkχq0
(ω, k)eiωy+ikx + e−iq0x

∫

dωdkχ∗
q0

(ω, k)e−iωy−ikx

)

where θ is a small parameter, and solve (A.2) to linear order in θ. Note that while our fluc-

tuation has a specific frequency (namely q0) in the x direction, it is a sum over frequencies

in the y direction and in time. This is necessary as our background breaks translational

invariance in the y and t directions, but preserves this invariance in the x direction. It

is easy to work out the linear equations that our fluctuation coefficients χq0
(ω, k) obey.

We find
[

iω(k2 + q20) + ν(k2 + q20)
2
]

χq0
(ω, q)

+
[

β(iq0)
(

(k − k0)
2 + q20 − k2

0

)

+ αiq0k
2
0

]

χq0
(ω − ω0, k − k0)

+
[

β∗(iq0)
(

(k + k0)
2 + q20 − k2

0

)

+ α∗iq0k
2
0

]

χq0
(ω + ω0, k + k0) = 0

(A.4)
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where

β = − α

1 +
νk2

0

iω0

.

Let us define

fk(γ, κ) = χq0
[ω0(γ + k), k0(κ+ k)] .

The fluctuation equation (A.4) may be recast in terms of fk as (we will usually omit to

write the functional dependence of fk in the equations that follow)

[

i

b
(γ + k)((κ + k)2 + c2) + ((κ+ k)2 + c2)2

]

fk

+ ica

(

−(κ+ k − 1)2 + c2 − 1

1 − ib
+ 1

)

fk−1

+ ica∗
(

−(κ+ k + 1)2 + c2 − 1

1 + ib
+ 1

)

fk+1

(A.5)

The dimensionless quantities a, b and c are parameters in (A.5) (a and b were defined

in section 4 while c = q0

k0
). γ and κ are variables in this equation; (A.5) is the condition

that a matrix acting on the columns {fk} has a zero eigenvalue. Together with the physical

requirement that fk decay at large |k|; this eigenvalue equation yields an expression for

unknown temporal frequency γ as a function of κ.17 That is, the equation (A.5) should

yield a dispersion relation of the form

γ = γ(κ, a, b, c, n) (A.6)

where the integer n labels which of the infinitely many solutions to the zero eigenvalue

condition we have chosen to study. A result for γ with a negative imaginary part represents

an instability of the system.

Let us study the large |k| asymptotics of the variables fk in a little more detail. Ac-

cording to our boundary conditions, at large positive k fk+1 is much smaller than fk−1.

As a consequence (A.5) implies that

fk

fk−1
=

ica

1 − ib
× k + 2(κ − 1)

k2(k + 4κ+ i
b)

×
(

1 + O(
1

k2
)

)

(A.7)

It follows that, at large k,

fk ≈ D(a, b, cκ)

(

ica

i− ib

)k Γ(k + 2κ− 1)

Γ(k + 1)2Γ(k + 4κ+ i
b + 1)

. (A.8)

where D is a constant. This estimate is valid provided that k ≫ 1 and that k2 ≫ ca√
1+b2

.

Similarly, the behavior of fk at large negative values of k is given by

fk ≈ D′(a∗, b, c, κ)

(

ica∗

i+ ib

)−k Γ(−k − 2κ− 1)

Γ(−k + 1)2Γ(−k − 4κ+ i
b + 1)

(A.9)

17Recall that κ is a real number (in order that the mode in question is well defined at all y) of unit

periodicity.
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where D′ is an independent constant. Note χ is real provided that D(a, b, c, κ) =

D′(a∗, b,−c,−κ); a condition that we consequently demand on physical grounds.

We are interested in determining the dispersion relation (A.6) as the condition for the

existence of a solution of (A.5) that achieves both asymptotic conditions (A.8) and (A.9)

(this leads to an equation as, generic solutions of (A.5) that obey (A.8) blow up at large

negative k).

A.2 Qualitative nature of the solution

Let us first note that the off diagonal terms in (A.5) are both proportional to a × c.

The proportionality to a reflects the fact that the problem gets strongly coupled at high

Reynolds numbers; we will have a lot more to say about this below. The fact that these

terms are proportional to c, however, implies that fluctuations with no x momentum are

governed by the linear Navier-Stokes equations, and so are always stable. An instability,

if it occurs, must necessarily break a symmetry (in this case of x translations) that the

background solution preserves.

In much of the rest of this section we specialize our analysis to κ = 0 and c = 1 (i.e.

k0 = q0) but for a reasonably wide range of the parameters a and b. We perform this

specialization for convenience in the numerical analysis that we will describe below; we

expect qualitatively similar results at all values of κ and reasonable nonzero values of c,

though we have not explicitly tested this expectation.

Let us start by painting a qualitative picture of physically relevant solutions of (A.5).

We start with the simple limit a → 0. Solutions are given exactly by fk = δk,K with

γ = −K + ib(K2 + 1) for K ranging over integers. The time dependence of this solution is

given by fk(t) = fk(0)e
−iKω0t−bωo(K2+1)t; it follows that all these modes decay in time, so

that our solution is stable against small fluctuations.

At small but nonzero values of Reynolds number Re = a√
1+b2

the solutions to (A.5) are

small perturbations of the solutions described in the paragraph above. On the Kth such

solution fk is nonzero at k = K, but decays rapidly as k moves away from K. In particular

fk−K ∝ (Re)|k−K|.18 The dispersion relation for γ, described in the previous paragraph, is

corrected in a power series in (Re)2. We will compute the first term in this series below.

As the Reynolds number is increased, the width in the distribution of fk (as a function

of k centered around k = K) increases. For Re ≫ 1 and Re ≫ √
n this width is of order

k ∼ (Re)
1

2 . (see (A.8) and (A.9)).

In summary, the fluctuation mode we study is highly localized about a particular y

momentum at small Reynolds number, but consists of a ‘cascade’ or roughly equal su-

perpositions of order (Re)
1

2 modes at large Reynolds numbers. The fluctuation modes

oscillate rather than growing exponentially in time at small Reynolds numbers; however

the stability properties of these modes must be elucidated by explicit calculation at large

Reynolds numbers.

18This decay is visible, for instance, in the asymptotic forms (A.8) and (A.9).
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Figure 1. The imaginary part of the frequency γ plotted against a, for κ = 0, c = 1 and the root

with K = 1. Note that Im(γ) = 2 at b = 0 and decreases monotonically as |b| is increased.

Figure 2. The real part of the frequency γ plotted against a, for κ = 0, c = 1 and the root with

K = 1. Note that Re(γ) = −1 at b = 0 and decreases monotonically as |b| is increased.

A.3 Numerical evaluation of the frequency

In this subsection we present the results of our rough numerical evaluation of the frequency

γ of the mode with n = 1 as a function of the Reynolds number, at various values of b. The

method we use is very simple. We start with a value of k large enough for the asymptotic

form (A.8) to be valid.19 We then use the recursion relations (A.5) to evaluate f1/f0. We

then independently evaluate the same ratio using (A.9) and recursion relations. Equating

these expressions for the same ratio gives us an equation which we use to solve for γ as a

function of all other parameters. Of course this equation has several solutions. At small

Reynolds number we choose the solution that is near to γ = −1 + 2ib (i.e. the mode

with K = 1 in the language of the previous subsection) , and then ‘follow’ this root as

we numerically increase the Reynolds number (in small steps) to large values. We have

performed all our calculations using Mathematica.

Let us describe our results in detail at b = 1. In figure 1. below we present a plot

of the imaginary part of γ as a function of Reynolds number. In figure 2 below we plot

19We have performed computations with values of this starting k ranging from 20 to 8. The plots

presented below are generated using the starting value 10. We have verified that our starting value of k is

large enough, by checking that our results are not significantly affected by increasing k.
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Figure 3. The curve that separates the region of stability (below) from instability (above) of the

eigenvalue at K = 1, plotted as a function of the Reynolds number on the y axis versus b on the x

axis. We have used κ = 0, c = 1 in the calculations that generated this plot.

the real part of the same frequency as a a function of Reynolds number. Notice that the

imaginary part changes sign (indicating a transition to instability) at a Reynolds number

of order 13.

We have performed the same analysis at several different values of b. At each value of

b the imaginary part of γ turns negative at a particular value of the Reynolds number. In

figure 3 below we have plotted this critical Reynolds number as a function of b for a range

of values of b.

As our principle aim in this subsection is to establish that the small fluctuations about

our solutions are unstable at high enough Reynolds numbers we have not attempted to

carefully estimate the errors in our numerical calculations. However we think it is unlikely

that the errors in, for instance, figure 3 exceed a few percent.

As we have described above, at every value of b we start our calculations at small

Reynolds numbers which are then slowly increased. As a check on our numerics, at small we

have compared our numerical results for γ versus k against the predictions of perturbation

theory (see the next subsection for details) at lowest order in (Re)2; we find good agreement.

In fact at b = 1 and a = 1/100, the difference between our numerical result and the zeroth

order answer matched the prediction of perturbation theory upto one part in 105; a more

accurate result than we had expected.

A.4 Perturbation theory at small Reynolds numbers

Let us formally identify the equation (A.5) with free index k with

〈k|M |ψ〉 =
∑

m

〈k|M |m〉〈m|ψ〉

and simultaneously identify

〈k|ψ〉 = fk

With these formal identifications, the set of equations (A.5) (for all k) are simply the

equation for the operator M to have a zero eigenvalue. The corresponding eigenvector is

specified by the values of fk on this solution.
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Let us write M = M0 + M1 where M0 is a diagonal operator in the basis described

above and M1 is an off-diagonal operator, proportional to α. The elements of the matrix

M0 and M1 are given by

〈fk|M0|fk〉 = A(k)

=

[

i

b
(γ + k)((κ+ k)2 + c2) + ((κ+ k)2 + c2)2

]

δkj

〈fk|M1|fk−1〉 = B(k)

= ica

(

−(κ+ k − 1)2 + c2 − 1

1 − ib
+ 1

)

δk,(j−1)

〈fk|M1|fk+1〉 = C(k)δk,(j+1)

= ica∗
(

−(κ+ k + 1)2 + c2 − 1

1 + ib
+ 1

)

δk,(j+1)

(A.10)

When α = 0 the eigenvectors of the operator M are simply |K〉 with eigenvalue A(K).

This eigenvalue vanishes when

γ0 = −K + i b
[

(κ+K)2 + c2
]

.

We now wish to study how this eigenvector - and the corresponding solution for γ that

keeps the eigenvalue zero - evolves in perturbation theory in α.

To lowest nontrivial order in perturbation theory, the shift in the eigenvalue A(k) is

given by

Ã(k) = A(k, ω) +
〈fk|M1|fk−1〉〈fk−1|M1|fk〉

A(k) −A(k − 1)
+

〈fk|M1|fk+1〉〈fk+1|M1|fk〉
A(k) −A(k + 1)

= A(k) +
B(k)C(k − 1)

A(k) −A(k − 1)
+

C(k)B(k + 1)

A(k) −A(k + 1)

(A.11)

In order that the eigenvalue vanish at this order we must have

γ = −K + i b
[

(κ+K)2 + c2
]

− i b

(K + κ)2 + c2

[

B(K)C(K − 1)

A(K − 1)
+
C(K)B(K + 1)

A(K + 1)

]

where the third term is evaluated at γ = γ0 and we have used the fact that A(K) = 0 at

γ = γ0.

B A simple flow on a sphere

It is not difficult to generalize the simple laminar flow presented in section 4 above to a

shear flow on a 2 sphere. The corresponding dual gravitational solution to this flow is

asymptotic to (slightly perturbed) global AdS space.

For concreteness we choose d = 3 and choose the base metric of our space to be the

two sphere, i.e.

ds2 = −dt2 + dθ2 + sin2 θdφ2 (B.1)
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Our velocity and forcing function fields will be vector fields on the two sphere, so be

briefly pause to recall some necessary definitions. Recall that the spherical harmonics, Y l
m

form a basis for the expansion of an arbitrary scalar field on the sphere. On the other hand

an arbitrary vector field on the sphere is given by linear combinations of ∂iY
l
m and ǫji∂jY

l
m

where the ǫ symbol includes relevant factors of
√
g. Now, in our problem, both vi and ai

are divergenceless. It follows that each of these fields may be expanded in a sum over only

the vector (rather than also the derivative of scalar) spherical harmonics.

In order to obtain one solution (that can easily be generalized in many ways) to the

Navier-Stokes equations, let

ai = αǫmi ∂mY
l
0 (θ, φ).

The velocity configuration20

vi = − α

1 − i l(l+1)−2
ω

× ǫmi ∂mY
l
0 (θ, φ).

(together with the implied pressure field) yields a steady state, laminar, shear flow. The

Reynolds number of this flow is given by (5.5) with a and b now given by a = α
koν and

b = ν(l(l+1)−2
ω . As for the solution presented in section 4, we expect this flow to be unstable

to small perturbations at fixed b in the limit of large a (we have not performed the linear

stability analysis in this case).
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